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Building a protein model from the initial three-dimensional

electron-density distribution (density map) is an important

task in X-ray crystallography. This problem is computationally

challenging because proteins are extremely ¯exible. The

algorithm ConfMatch is a global real-space ®tting procedure

in torsion-angle space. It solves this `map-interpretation'

problem by matching a detailed conformation of the molecule

to the density map (conformational matching). This `best-

match' structure is de®ned as one which maximizes the sum of

the density at atom positions. ConfMatch is a practical

systematic algorithm based on a branch-and-bound search.

The most important idea of ConfMatch is an ef®cient method

for computing accurate bounds. ConfMatch relaxes the

conformational matching problem, a problem which can only

be solved in exponential time, into one which can be solved in

polynomial time. The solution to the relaxed problem is a

guaranteed upper bound for the conformational matching

problem. In most empirical cases, these bounds are accurate

enough to prune the search space dramatically, enabling

ConfMatch to solve structures with more than 100 free

dihedral angles. Experiments have shown that ConfMatch may

be able to automate the interpretation of density maps of

small proteins.
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1. Introduction

Determining the structures of proteins is essential to under-

standing the molecular biology of cells. X-ray crystallography

is the `gold standard' for protein-structure determination. This

paper describes ConfMatch, a systematic algorithm for an

important step in solving an X-ray structure: building a model

from the initial three-dimensional electron-density distribu-

tion (density map). ConfMatch solves this `map-interpreta-

tion' problem by matching a detailed conformation of the

molecule to the density map. ConfMatch performs a global

conformational search of all dihedral, translational and rota-

tional degrees of freedom. This problem is computationally

challenging because proteins are extremely ¯exible. A typical

protein may have several hundred degrees of freedom. The

space of possible conformations is astronomical. If one de®nes

a function that evaluates how well a conformation matches the

density map, this function will have many local minima over

the space of possible conformations. Any non-systematic

algorithm may produce a local optimum instead of the global

optimum. ConfMatch quantizes the continuous conforma-

tional space into a large set of discrete conformations and

®nds the best solution within this discrete set. Because

ConfMatch samples the conformational space very ®nely, its
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solution is usually very close to the globally optimal confor-

mation.

ConfMatch's approach is based on ®tting a chemically

feasible molecular structure to an imperfect density map. It

®nds this `best-match' structure by a systematic branch-and-

bound search. The output of ConfMatch, a chemically feasible

conformation, is detailed and has reasonable geometry and

stereochemistry. It includes all non-H atoms of the target

molecule. The conformation satis®es various commonly

accepted chemical constraints such as bond lengths, angles,

chirality etc.

ConfMatch has two important potential applications.

(i) When a scientist tries to solve a structure by multiple

isomorphous replacement (MIR) or multiple-wavelength

anomalous dispersion (MAD), he/she must spend a long time

manually ®tting and re®ning the molecular structure to the

experimental density map. This manual step can be mostly

automated if an algorithm can ®nd a high-quality structure

matching well to the density map. Therefore, ConfMatch can

be a time-saving tool for protein crystallographers.

(ii) Instead of ®tting a single structure to the electron

density, ConfMatch can be adapted to ®t a family of structures

simultaneously to any kind of stationary ®eld (x4.5). The result

would be the best-®t structure within the family. For example,

one may calculate the optimal electrostatic ®eld for binding of

a disease-causing protein (Lee & Tidor, 1997). This optimal

®eld speci®es the electrostatic charges at different regions of

space potentially occupied by a ligand. The space may be

partitioned into regions charged positively, negatively or

neutrally. ConfMatch can at once ®t all peptides of a certain

length to this ®eld. The output structure will give the best

theoretical peptide ligand to this protein, as well as its most

favored conformation. Therefore, ConfMatch can be a useful

tool for rational drug design.

2. Related work

The process of building a model from the initial electron-

density map (map interpretation) is an important part of

solving an X-ray structure. For small molecules with high-

resolution data, the most common method for map inter-

pretation is peak picking. This algorithm simply ®nds the w

highest peaks (local maxima) in the map, where w is the

expected number of atoms in a unit cell, and declares them the

atom positions. The identities of different peaks are usually

labelled manually. Peak picking has long been used in small-

molecule direct methods, as crystals of small molecules diffract

to very high resolution. Atoms are located at the peaks of

density maps at suf®ciently good resolution. However, peak

picking becomes ineffective with data of resolution worse than

1.2 AÊ . At lower resolution, atoms rarely locate at the peaks of

the electron-density map. Most macromolecules of interest

diffract to 2.0 AÊ or worse. Therefore, the applicability of peak

picking to protein crystallography is limited.

Currently, there is no fully automated solution that can

derive a detailed molecular structure from a density map for

protein-size molecules. Much manual intervention is required

to construct such a model. There are several computational

approaches that automate different aspects of this process.

Most of these techniques attempt to detect within the density

map certain structural features which may guide or facilitate

the human model builder.

Skeletonization (Greer, 1974) is an early method for

building protein models. First, the map is searched to locate

three kinds of features: peaks, ridges and join points. Peaks are

the same features de®ned in the previous method. A ridge is

the highest density path joining two peaks. A join point is the

lowest point on a ridge. In other words, a join point is the the

lowest point on the highest path joining two peaks. The output

of this method is a set of ridges forming the `skeleton', which

may trace the main and secondary chains of the molecule.

Usually, only ridges with high-value join points are included in

the output. The skeleton is an unlabelled structure and usually

has many errors and ambiguities. Adding the atom labels, as

well as correcting errors in the skeleton, must be performed

manually in order to build an initial model.

Based on skeletonization, Jones & Thirup (1986) developed

a widely used method for building protein crystal structures.

They observed that a protein structure can be constructed

from fragments of other proteins. Thus, the known protein

structures can be treated as a knowledge base from which one

extracts information to be used in molecular modelling. Their

method ®rst calculates a skeleton from the electron-density

map. The errors in the skeleton are located and corrected

interactively. Fragments of 5±7 residues from known struc-

tures are matched to the skeleton. After the best-matching

fragments are selected, the ®t of each residue can be further

improved to generate an initial model.

Terry's CRYSALIS system (Terry, 1988) is another map-

interpretation method based on skeletonization. CRYSALIS

is an expert system which labels the peaks and ridges of a

skeleton. Its knowledge base consists of many heuristics

concerning protein crystal structures. Terry developed a hier-

archical production system in which control proceeds through

many levels of strategy heuristics until one speci®c action at

the problem-solving bottommost level is selected. Unfortu-

nately, CRYSALIS cannot overcome the many errors usually

present in skeletons.

Molecular-scene analysis (Leherte et al., 1994) is a new

approach to map interpretation. At medium (�3 AÊ ) resolu-

tion, this algorithm searches the map to locate two kinds of

features: peaks and passes. Peaks are de®ned the same way as

in the previous methods. A pass is a saddle point in the map

where the three ®rst derivatives are zeroes but only two of the

three second derivatives are positive. A pass is very similar to

a join point in the previous method. Leherte et al. observed

that at medium resolution the peaks correspond to amino-acid

residues, while the passes correspond to the adjacency of the

residues in the primary sequence. The protein backbone can

thus be viewed as a sequence of alternative peaks and passes.

Given the peaks and passes features, the molecular-scene

analysis method calculates a minimal spanning tree of alter-

nating peaks and passes. The peaks are declared as the loca-



tions of either the residues or large side chains. The next stage

of the algorithm ®nds the most plausible way to superimpose

the amino-acid sequence onto the spanning tree by protein-

threading methods.

Zou and Jones developed an alternative approach to

matching a protein sequence to a model structure (Zou &

Jones, 1996). Their method requires the crystallographer to

build at least a polyalanine model through the density map.

For each of the 20 residue types, their program optimizes the

®t of the side-chain atoms to the density by pivoting the side

chain around each C� atom. For the best-®tting rotamer of

each residue type, a score is calculated which is used as an

index of how well that amino-acid type ®ts the density. Once

the scores are obtained for every residue type at every posi-

tion, Zou and Jones' method calculates how well a sequence of

amino acids matches the backbone model by combining the

individual scores. The output of their program de®nes the

placements of subsequences of the protein on the polyalanine

structure.

Template convolution (Kleywegt & Jones, 1997) is a new

approach to detecting large structural features in the density

map. A template is a set of atoms, usually an ideal short

�-helix or �-strand. This algorithm rotates the template

around a pivot point for each point in the map and a score is

calculated which re¯ects how well the atoms ®t the density for

each orientation at each point. This is equivalent to a six-

dimensional rigid-body search. The highest scores indicate the

locations and orientations of the templates. The structural

features detected by this method can guide the human model

builder or enhance the electron-density map.

Recently, Perrakis and coworkers developed the

warpNtrace method (Perrakis et al., 1999) to automate protein

model building. It attempts to automatically construct a

protein model starting from electron-density maps without

user intervention. This method is based on an iterative

procedure that describes the electron-density map as a set of

unconnected atoms and then searches for protein-like

patterns. For many proteins, warpNtrace can construct a large

part of the backbone and some of the side chains. An

important requirement is that the diffraction data extends to

2.3 AÊ or better.

The goal of ConfMatch, similar to that of warpNtrace, is to

fully automate map interpretation. No human guidance is

required in constructing a detailed high-quality molecular

structure. ConfMatch generates its output conformation

directly from the density map.

Unlike most existing techniques, ConfMatch does not use

any local features. Without the aid of local features,

ConfMatch is usually more computationally intensive than

feature-based algorithms. Thus, it is currently practical to use

ConfMatch to solve only small proteins or small parts of large

proteins. On the other hand, ConfMatch's output achieves a

global property: the entire conformation is a `best match' to

the density map. The use of a global property instead of local

features may allow ConfMatch to interpret less accurate

density maps or lower resolution diffraction data than other

algorithms. In addition, ConfMatch's result is a complete

structure. The output includes every backbone and side-chain

atom speci®ed by the user. This completeness property cannot

be achieved by most other methods.

3. The conformational matching problem

This section describes an approach to interpreting an electron-

density map by solving the conformational matching problem,

i.e. ®nding a conformation that best matches the density. At

resolutions typical of protein crystals, the peaks of the density

map usually do not correspond to atom positions, but the high-

density regions still follow the main and side chains of the

protein. Thus, it is quite possible to ®nd the correct confor-

mation from a medium-resolution density map. To overcome

the inaccuracies of the density map, we make use of the

commonly accepted chemical constraints such as bond lengths,

angles, chirality etc. These constraints limit a molecule to its

chemically feasible conformations. The possible distribution of

atoms is much more restricted if they must obey the basic rules

of chemistry. By applying more chemical constraints, we hope

to produce a fully automated solution to electron-density map

interpretation.

The de®nition of the conformational matching problem is as

follows: given an electron-density map and the primary struc-

ture of a molecule, assuming ®xed bond distances and angles,

®nd a feasible conformation such that the sum of the density at

(non-H) atom positions is maximized. A feasible conformation

is one which satis®es constraints such as cis/trans and planarity

of double bonds, chirality and excluded volume (x4). The

objective function, the sum of the density at non-H atom

positions, ignores the different identities of atoms. A C atom

occupying a position is valued the same as if an N atom

occupies it. If all non-H atoms have similar atomic numbers,

their electron-density distributions will be very similar. This

objective function is adequate if the molecule is composed of

C, N, O and H only. However, if some non-H atoms have much

higher atomic numbers than others, the objective function may

need to be modi®ed. One possible solution (x5.2.1) is to

separate the atoms into two classes: heavy atoms and light

atoms. Each class has its own electron-density distribution that

the atoms will measure from. The modi®ed objective function

is to maximize the sum of density, measured from an atom's

particular density distribution, at positions of all atoms.

Instead of maximizing the sum of density at atom locations,

there are other possible measures for the best structure. For

example, one could minimize the R factor or the electron

density unaccounted for by the structure. However, it is

dif®cult to develop an ef®cient algorithm for these objective

functions because they are calculated based on the entire

density distribution, not just at the atom positions. The

conformational matching problem as de®ned above strikes a

good balance between computational ef®ciency and the

accuracy of results.

Conformational matching is a constrained global optimi-

zation problem. One cannot solve this problem by ®nding

local features in the density map, for a locally optimal

conformation may not be part of the globally optimal solution.

Acta Cryst. (2000). D56, 1591±1611 Wang � ConfMatch 1593

research papers



research papers

1594 Wang � ConfMatch Acta Cryst. (2000). D56, 1591±1611

This is especially true in the presence of errors in the density

map. In order to ®nd the global optimum, some form of global

search is required. If one assumes ®xed bond angles and bond

lengths, the number of degrees of freedom of a conformation

is 6 + p, where p is the number of free dihedral angles. (Table 1

lists all symbols de®ned in this paper.) The extra six degrees of

freedom comes from the rigid displacements. Even for very

small proteins, p can run into hundreds. The number of

possible conformations, exponential in p, is astronomical.

Exhaustive conformational search, such as uniform torsional

search, is impractical without an intelligent way to vastly

reduce the search space.

4. The ConfMatch algorithm

ConfMatch is a systematic algorithm for solving the discretized

conformational matching problem. The discretization speci®es

a three-dimensional grid in space. For ease of implementation,

we require that the three axes of the grid follow the axes of the

unit cell. The grid axes are thus orthogonal in fractional space

but not necessarily in Cartesian space. All atoms are required

to locate on grid points. This grid will allow us to use discrete

combinatorial techniques. The size of the grid also determines

the local quality of the initial solution structure. Given a ®ne

grid, the resulting structure is very close to the continuous

solution. However, local constraints such as bond lengths and

angles may be violated slightly as a function of grid size. To

improve the local quality and remedy these violations, one

may simply apply local optimization techniques, such as

conjugate gradient in a continuous search space, on the output

of ConfMatch. Usually, we choose 0.5 AÊ as the grid spacing. In

the rest of this paper, all references to bond lengths, angles and

planarity have some implicit tolerance that permits the use of

the grid.

ConfMatch is a branch-and-bound method with two stages:

the bound-preprocessing stage and the search stage. The

bound-preprocessing stage runs in time proportional to a

function polynomial in p, the number of free dihedral angles

(polynomial time). It calculates a table of upper bounds on the

possible density sum. These upper bounds are based on all

conformations that have the correct bond lengths and angles,

but may or may not satisfy the excluded volume constraints.

This set of bounds will allow the second stage to avoid most of

the search space. The search stage performs a systematic

conformational search of the target molecule. Each torsion

angle of a single bond is searched through a series of possible

values, similar to the internal coordinate tree search (Lipton &

Still, 1998). However, it is much more ef®cient than internal

coordinate search because of the bounds: at every step of the

conformational search, ConfMatch retrieves from the bounds

table an accurate estimate of the remaining density sum. If the

estimate is too low, the particular search direction is termi-

nated. Therefore, it can explore only a small portion of the

search space and ®nd the solution conformation. Like other

back-tracking search techniques, this stage can take time

proportional to a function exponential in p (exponential time)

in the worst case, although in practice the search stage may

take much less time than the bound-preprocessing stage given

good density data.

Because any molecule must obey the basic rules of chem-

istry, a molecule's primary structure translates into a large

number of geometric constraints, including

(i) bond angles,

(ii) bond lengths,

(iii) cis/trans and planarity of double bonds,1

(iv) chirality of all chiral centers,

(v) intramolecular excluded volume constraints, i.e. any pair

of non-bonded atoms in the same molecule must be further

apart than the sum of their hard sphere radii,

(vi) intermolecular excluded volume constraints, i.e. any

pair of atoms in different molecules (including symmetry

mates) must be further apart than the sum of their hard sphere

radii (bump checking).

Although the bond angles or lengths do vary a small amount

among different molecules, their variation is not nearly as

large as the grid spacing. They can be assumed ®xed for the

conformational matching problem. We call the above

constraints the full set. The conformational matching problem

is equivalent to maximizing the total density at atom positions

while satisfying the full constraints. ConfMatch separates these

geometric constraints into two sets, local and non-local, one

for each stage of the algorithm (full = local [ non-local). The

bound-preprocessing stage satis®es the local set:

(i) angles of all bonds except ¯exible-ring forming ones,

Table 1
These symbols are de®ned in this paper and listed in the order of their
appearance.

Notation Description Section

p Number of free dihedral angles x3
n A node in the fragment tree x4.1
j Bond placement x4.1
En;=bfj An upper bound of the density sum of n's

sub-fragment tree, where n's in-bond is placed at j
x4.1

s Number of torsional samples x4.1
ei

n;j The density sum of the ith sample of fragment n x4.1
Si

n;j An upper bound of the density sum of n's
sub-fragment tree, provided that sample i is chosen
for fragment n.

x4.1

R A rotational transformation in Cartesian coordinates x4.2.2
�L Sampling interval of torsional angles (pseudo-uniform) x4.2.2
t A state in conformational search x4.3
f(t) An upper bound of the density sum of the entire

structure given the current partial structure at t
x4.3

g(t) Density sum of the partial structures at t x4.3
h(t) An upper bound of the density sum of the remaining

structure
x4.3

flim f-value limit for a depth-®rst search x4.3
M An upper bound of the density sum of the entire

structure
x4.3

d The density sum of a solution structure x4.4.4
" The minimal improvement in solution we can accept x4.4.4
C A transformation from fractional into

Cartesian coordinates
x5.2.2

1 If it is not known whether a double bond is cis or trans, ConfMatch can
calculate the most likely isomer. x4.5 describes a simple extension to the
algorithm that handles this case.



(ii) lengths of all bonds except ¯exible-ring forming ones,

(iii) cis/trans and planarity of all double bonds except

¯exible-ring forming ones,

(iv) chirality of all chiral centers.

A ¯exible ring must have at least one rotatable bond. For

proteins, the ¯exible-ring forming bonds refer to disul®de

bonds only. In other molecules, we need to remove one bond

from each ¯exible ring. The aromatic rings, such as the phenol

ring, are rigid and not broken apart. If a rigid ring is puckered,

such as the one in proline, but its exact puckering is unknown,

ConfMatch can calculate the most likely one. A simple

extension to the algorithm that handles this case is described

in x4.5. Fig. 1 shows a bond being removed from a ¯exible ring

of a complex molecule. Note that the number of atoms

remains unchanged and the molecule is still a connected

structure.

The search stage sati®es the remaining constraints, the non-

local set:

(i) angles, lengths and planarity of ring-forming bonds,

(ii) intramolecular excluded volume constraints,

(iii) intermolecular excluded volume constraints.

4.1. The bound-preprocessing stage

A molecule without any ¯exible rings has a tree-like

structure. In a tree-structured molecule, the constraints in

local do not impose any limit on the dihedral angles because

steric clashes are allowed and there are no rings to close. The

key observation enabling ConfMatch is as follows: without any

constraints on the dihedral angles, the optimization of the

density sum can be solved in time polynomial in the number of

dihedrals by dynamic programming. We will describe the

optimization method later in this section. Because local is a

subset of full, this maximized density sum must be an upper

bound on the solution to the complete problem. In fact, the

bound-preprocessing stage is solving a relaxed conformational

matching problem because constraints in non-local are

ignored. Introducing these non-local constraints can never

increase the optimal density, only possibly decrease it.

We are guaranteed that the solution (maximum density

sum) to the local set is an upper bound of the full set. In order

to maximize its usefulness, we also want the upper bound to be

as tight as possible. Given a reasonable electron-density

distribution, this upper bound from local is likely to be close to

the actual value for the following reasons.

(i) Most bonds are included in the calculation. The ring-

forming ones constitute a small percentage of the bonds in a

typical macromolecule.

(ii) All important local geometries, including angles, lengths,

planarity and chirality, are considered in this stage.

Results in x5 will show that the difference between the upper

bound and the solution is usually very small for data with a low

to medium level of error. This difference is sometimes less

than the density of a single atom.

At the ®rst glance, it is not obvious that the bound-

preprocessing stage can obtain its results with polynomial time

complexity. It may seem that the problem of ®nding the

maximum density sum, under only local contraints, still

requires an exponential time search: one needs to evaluate all

possible combinations of all torsion angles, with the molecule

placed at all possible positions inside the asymmetric unit and

in all possible orientations. However, the same results can be

found in polynomial time by a bottom-up dynamic program-

ming approach (Aho et al., 1982). This approach begins with

the observation that all molecules can be viewed as an

assembly of small rigid fragments. For instance, Fig. 2 shows

how a glycine molecule can be formed from two rigid frag-

ments. Note that all H atoms are `uni®ed' with their heavier

neighbors because we do not calculate the positions of H

atoms explicitly. H atoms are not resolvable in typical

electron-density maps. The bond where the two fragments join

is freely rotatable, giving the molecule an extra degree of

freedom. A protein would have hundreds of these rigid frag-

ments and hence hundreds of degrees of conformational

freedom. For each rigid fragment, we de®ne one bond to be its

in-bond and some other bonds to be its out-bonds. In general,

a fragment can have at most one in-bond and any number of

out-bonds. For example, the fragment centered at the
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Figure 1
A bond is removed from the ¯exible ring of rifamycin SV (Arora, 1983), a
macrocyclic molecule. The smaller rings are rigid and not broken apart.
The local constraint set speci®es the local geometries of the reduced
molecule.
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�-carbon of valine would have two out-bonds: one along the

protein backbone and the other along the valine side chain.

Two fragments can be linked if one's in-bond coincides with

the other's out-bond.

Given the input to ConfMatch, the primary structure of a

molecule, the ®rst step of the algorithm removes the ring-

forming bonds and divides the rest of the structure into rigid

fragments. If exact coordinates of the fragments are not given,

one may use a library of standard fragments. Each fragment is

connected to the others through in-bond±out-bond relation-

ships. The fragments form a fragment tree that matches the

tree structure of the molecule. The forks in the tree are formed

by fragments with multiple out-bonds. The fragment tree of a

protein would have a long stem corresponding to the main

chain, as well as many short branches corresponding to the

side chains. The structure of fragments and their in-bond±out-

bond relationships assure that the local geometry of the

molecule is correct. Thus, the local constraint set is satis®ed by

all conformations derived from the fragment tree.

Fig. 3 illustrates the basic idea of the dynamic programming

approach by a two-dimensional analogy. In this example, we

attempt to ®nd the maximum density sum of a `glycine' in a

rectangular unit cell with a rectangular grid. The concept

behind this two-dimensional example can be easily general-

ized to three dimensions.

Step 1. Separate the ¯exible glycine molecule into two rigid

fragments (fragments 1 and 2).

Step 2. Evaluate the electron-density sum of fragment 2 at

all possible positions inside the unit cell and in all possible

orientations.

Step 3. Store the density sums in a giant table, indexed by

the placements of fragment 2's in-bond; i.e. for each possible

placement of the in-bond, we store the highest density sum.

Step 4. Evaluate the electron-density sum of fragment 1 at

all possible positions inside the unit cell and in all possible

orientations.

Step 5. Store (the density sum of fragment 1) +

(maximum density sum of compatible placements of frag-

ment 2) in a table indexed by the placements of fragment

1's in-bond. Compatibility here implies that fragment 1's

out-bond coincides with fragment 2's in-bond. Fragment 2's

sum need not be recalculated. It can be simply looked up

from the table in step 3.

One can see that the table from the last step indeed gives

the maximum density sum overall. The highest value in this

table is identical to that obtained by evaluating all possible

values of the torsion angle, with the molecule placed at all

possible positions and orientations. This fact can be proven

by a mathematical induction. Furthermore, if a molecule has

more torsion angles, more fragments will be generated and

more tables will be constructed. However, the number of

tables and steps are always proportional to the number of

fragments. Thus, the running time of the dynamic

programming method only grows linearly with the number

of torsion angles.

Now we give a more detailed description of the bound-

preprocessing stage. The output of this stage is a large table of

bounds. Each entry is written as En;j, where n is a particular

node in the fragment tree and j is the position of a pair of grid

points

Figure 3
The bound-preprocessing stage executes on a two-dimensional example.
Actual executions, in three dimensions, involve similar steps.

Figure 2
A glycine molecule can be separated into two rigid fragments. Its
fragment tree has two nodes.
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En;j, stores the maximum density sum (satisfying only the local

set) of the sub-fragment tree of n (Fig. 4), where n's in-bond is

located at j; that is, the ®rst and second atom of the in-bond

are located at

xj

yj

zj

0@ 1A and

x0j
y0j
z0j

0@ 1A;
respectively. There is an entry for every node in the fragment

tree and every pair of grid points separated by the right bond

length. Because a unit cell's neighbors are exact copies of

itself, we need to consider only the grid points within a single

cell. However, for pairs that cross the unit-cell boundary, the

out-of-bound point is translated back into the cell. This table's

size is equal to the size of the fragment tree � the number of

pairs of grid points at bonding distance in a unit cell.

The number of fragments in a structure is equal to one plus

its torsional degrees of freedom p. A typical bond is between 1

and 2 AÊ , which is quite small compared with the unit cell of a

crystal. Therefore, the number of pairs of grid points at

bonding distance is a small constant2 multiple of the size of the

grid. We can rewrite the table size as

a small constant� �1� p� � the number of grid points:

It is also the space complexity of the bound-preprocessing

phase. This table can take a large amount of storage if the

input molecule has many degrees of freedom and a large unit

cell. For instance, the bounds table has more than 600 million

entries for a short 12-residue peptide with an 11 000 AÊ 3 unit

cell. x4.2 describes several techniques that reduce the table

size by a constant factor while retaining most of the infor-

mation.

The bounds table is calculated node by node. The iteration

over n, the node in the fragment tree, is the outer loop, while

the iteration over j, the bond placement, is the inner loop. This

calculation is performed in a bottom-up fashion. Initially, the

bounds of the leaf fragments are computed. Since the subtree

of a leaf node is the leaf itself, we only need to calculate the

bound of a single rigid fragment. At every grid-point pair, we

simply perform a uniform torsional sampling about the in-

bond and store the maximum density sum. Fig. 5 shows a

torsional sampling of the second fragment of glycine. Suppose

s torsional angles are uniformly sampled for a leaf node n

whose in-bond is located at j. The ith sample is generated by a

rotation of �i = 2�i/s around n's in-bond. This rotation

corresponds to the following rigid transform (Craig, 1986):

kxkxv�i � c�i kxkyv�i ÿ kzs�i kxkzv�i � kys�i xj

kxkyv�i � kzs�i kykyv�i � c�i kykzv�i ÿ kxs�i yj

kxkzv�i ÿ kys�i kykzv�i � kxs�i kzkzv�i � c�i zj

0 0 0 1

26664
37775

�

1 0 0 ÿxj

0 1 0 ÿyj

0 0 1 ÿzj

0 0 0 1

26664
37775;

where

kx

ky

kz

0@ 1A
is the unit vector in the direction of

x0j ÿ xj

y0j ÿ yj

z0j ÿ zj

0@ 1A;
c�i = cos�i, s�i = sin�i and v�i = 1 ÿ cos�i. x4.2 describes some

techniques which perform the torsional sampling without

using these transformation matrices.

Let ei
n;j be the density sum of the ith sample. This value is

the density sum of a single fragment at a particular con®g-

uration. It can be calculated in time proportional to the

number of atoms in the fragment minus two. To avoid double

counting, we do not include the two atoms of the in-bond.

These atoms are included in the density sum of the parent

fragment. Then,

En;j � max
s

i�1
ei

n;j: �1�

The inner nodes's bounds can be calculated based on their

children's values. Suppose n is an inner node whose children
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Figure 4
A fragment tree and its entries in the bounds table. Each set of entries
stores the upper bounds of a sub-fragment tree.

2 Actually, this constant is the number of grid points on a sphere with radius
equal to the bond length. This number is proportional to the square of grid
spacing, or the 2

3 power of the number of grid points if we assume uniform grid
spacing.
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are nodes n1, n2, . . . , nm. At every grid-point pair, we also

perform a uniform torsional sampling about the in-bond of n.

At each sample, we also ®nd the positions of out-bonds 1 to m.

Let ji
l be the position of the lth out-bond at sample i of node n.

Instead of maximizing n's density sum alone, we maximize the

sum plus the bounds of its children,

En;j � max
s

i�1
�ei

n;j �
Pm
l�1

Enl;j
i
l
�: �2�

If we de®ne Si
n;j � ei

n;j �
Pm

l�1 Enl;j
i
l
, then

En;j � max
s

i�1
Si

n;j:

Si
n;j can be considered the maximum density sum (satisfying

only the local set) of n's sub-fragment tree, provided that

sample i is chosen for fragment n. Since we calculate the

bounds from the leaves up towards the root, we can simply

look up Enl;j
i
l

from the table. Let u be the time required to

calculate each entry in the table.

u / s��average number of atoms in a fragment ÿ 2

� average branching factor of the fragment tree�:
The bound-preprocessing stage is ®nished after we calculate

the bounds of the root node. One can prove that the entries

are indeed the maximal density sum by an induction on the

fragment tree. The running time of this stage is

u� the size of the fragment tree

� the number of pairs of grid points at bonding distance:

4.2. Optimizations of the bound-preprocessing stage

Although the bound-preprocessing stage is a polynomial

time and space method, it can take days of CPU time and

gigabytes of storage for even a small protein. This section

describes several techniques that reduce the space require-

ment and the running time by a constant factor. Table 2 is a

comparison of these optimization methods. ConfMatch inte-

grates all of them to solve large problems ef®ciently.

4.2.1. Common subtree elimination. From the semantics of

the bounds table, we see that two nodes with identical sub-

fragment trees would have the same bounds. That is, if the

subtree of n is identical to that of n0, then

En;j � En0;j

for all j. We can avoid redun-

dant calculations if common

subtrees can be discovered and

merged. Fig. 6 shows this

operation on the fragment tree

graphically. We call this proce-

dure common subtree elimina-

tion, analogous to the common

subexpression elimination tech-

nique in compiler optimization.

This operation can be applied repeatedly on the fragment tree

to reduce its size, thus decreasing the size of the bounds table

and the computation time proportionately.

If we apply common subtree elimination to a protein, none

of the nodes on the main chain can be eliminated because each

has a unique subtree. However, all side-chain nodes can be

merged according to their amino-acid labels. All valines will

be merged into a single branch, all leucines into another etc. In

effect, we calculate the bounds of each amino-acid type only

once, regardless of the size of the protein. The advantage of

this optimization grows with the level of repetition in the

amino-acid sequence. For a large protein, the calculation of

side-chain bounds is amortized over many residues. Each

additional residue usually adds only two nodes to the tree,

corresponding to the additional ' and  angles on the main

chain.

4.2.2. Precomputing torsional sampling. Calculating each

entry in the bounds table requires a torsional sampling about

an in-bond. With some precomputation, we can avoid the

expensive multiplication by a 4 � 4 transformation matrix at

every sample. The precomputation involves a pseudo-uniform

Table 2
Comparison of different optimizations of the bound-preprocessing stage.

Technique Time optimization Space optimization

Common subtree elimination Depends on molecular structure
Precomputing torsional sampling Some None
Utilizing crystallographic symmetry By the number of asymmetric units in the unit cell
Reducing the size of each table entry None By a factor of 2

Figure 6
Three nodes of a fragment tree are eliminated by common subtree
elimination.

Figure 5
A torsional sampling about the in-bond of the second fragment of glycine.



rotational sampling using Lattman's method (Lattman, 1972).

This method generates a number of rotational matrices (R1,

R2, . . . ) that are approximately uniformly distributed over the

space of all rotational transforms. Each rotation differs from

its adjacent neighbors by a ®xed angle �L. After the molecular

structure is divided into rigid fragments, we apply these

rotations to each fragment. It gives us a pseudo-uniform

sampling of the rotational con®gurations of all fragments. Let

N be the initial con®guration of a fragment. Its rotational

con®gurations are stored as R1(N), R2(N), . . . . These

con®gurations are classi®ed based on the orientations of their

in-bonds. Let

xi

yi

zi

0@ 1A and

x0i
y0i
z0i

0@ 1A
be the locations of the two in-bond atoms of Ri(N). Each Ri(N)

is classi®ed according to the vector

x0i ÿ xi

y0i ÿ yi

z0i ÿ zi

0@ 1A:
To sample the torsional space of a particular in-bond, we

simply select the subset with the correct in-bond orientation.

For example, if we are to sample an in-bond at

xj

yj

zj

0@ 1A and

x0j
y0j
z0j

0@ 1A;
R1(N) would be selected if

x0i ÿ xi

y0i ÿ yi

z0i ÿ zi

0@ 1A � x0j ÿ xj

y0j ÿ yj

z0j ÿ zj

0@ 1A:

The required con®guration is generated by translating Ri(N)

by

xj ÿ xi

yj ÿ yi

zj ÿ zi

0@ 1A:
Fig. 7 shows an example con®guration generated by this

technique. For every torsional sample, we need to calculate

only a simple translation instead of the full 4 � 4 transform.

These con®gurations sample each torsional angle at intervals

of about �L.

Both �L and the grid spacing can affect the sampling of

conformations. For most applications, a ®xed �L of about 20� is

suf®cient. If one wants to assure that every possible confor-

mation on the grid is sampled (completeness), one must

choose �L based on the grid spacing and the geometries of

fragments: given a fragment, we ®nd the atom farthest away

from the in-bond axis ± the axis of rotation (Fig. 8). Let D be

the distance between this atom and the axis. Let g be the grid

spacing. We need to guarantee that between two adjacent

samples, all atoms move by distance g or less,

�LD � g:

We need to choose �L � g/D. Larger fragments usually gives a

bigger D value. Using this scheme thus implies choosing small

�L for a ®ne grid with large fragments and vice versa.

4.2.3. Utilizing crystallographic symmetry. If a crystal has

rotational or screw symmetry (crystals of all space groups

except P1), its unit cell is composed of several copies of the

asymmetric unit. The bounds table would have the same

symmetry as the crystal if we preserve the symmetry property

throughout our calculation. Speci®cally, preserving the

symmetry has the following requirements.

(i) The electron-density distribution has the same symmetry

as the crystal. This is always true with appropriate input data.

(ii) The grid has identical symmetry as the crystal, i.e. the

grid is invariant under symmetry operations of the crystal, as

well as translation by one unit-cell length along any of the

three axes. If the unit cell has two-, three-, four- or sixfold axes

of rotation, the grid must have the same axes. This require-

ment does not reduce the generality of ConfMatch because

one can always ®nd an appropriate grid for any kind of unit

cell.

(iii) The rotational sampling preserves the rotational

symmetry of the crystal. This property, together with the

symmetry of the grid, assures that if a particular con®guration
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Figure 7
A torsional sample of the second fragment of glycine is generated from a
precomputed con®guration.

Figure 8
To assure completeness, it is necessary to choose �L based on the distance
between the in-bond axis and the atom farthest away from it.
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of a fragment is sampled, its symmetric counterparts will also

be sampled.

The bounds table will have identical symmetry as the crystal if

all of the above requirements are ful®lled. We need to

calculate and store only the asymmetric unit of the bounds

table, cutting the time and space requirement to a fraction of

the original. For example, this optimization will result in a

twofold reduction in time and space of the bound-preproces-

sing stage for space group P21.

4.2.4. Reducing the size of each table entry. Electron-

density values are usually stored as ¯oating-point numbers,

which usually take 4 bytes of memory. The only operations on

these values by ConfMatch are additions (for summing density

values) and comparisons (for choosing the maximum sum). If

we use ®xed-point instead of ¯oating-point values, these

operations only propagate errors linearly. In other words, the

magnitude of the error is proportional to the number of

operations performed. Without losing much accuracy, we may

use a properly normalized integer representation of density

values. ConfMatch uses 2 byte short integers to represent

these values as well as entries in the bounds table. This

representation cuts down the size of the bounds table by one

half.

4.3. The search stage

The output of the bound-preprocessing stage is a large table

of upper bounds. Without any search, it is possible to calculate

a `greedy' structure that maximizes the density sum. This

`greedy' structure, satisfying local but not non-local, is formed

by tracing the highest density path through the bounds table.

First, one ®nds the best location of the in-bond of the root

fragment. Let nroot be this root node. j� � arg maxj Enroot;j
is

the pair of grid points where the in-bond resides. Then one

®nds arg maxs
i�1 Si

nroot;j
�, which gives the torsion angle of the in-

bond. This provides the exact con®guration of the root frag-

ment, from which nroot's out-bonds' positions can be derived.

If one applies this procedure recursively down the fragment

tree, all torsional angles can be selected and the `greedy'

structure is found. Unfortunately, this `greedy' structure may

have rings that do not close or atoms that clash with one

another. Therefore, it is necessary to perform a conforma-

tional search to ®nd a structure without any of these violations.

The constraints to be satis®ed in the search stage, the non-

local set, are embodied in two distance matrices (Crippen &

Havel, 1988), one intramolecular and one intermolecular.

Each distance matrix describes a lower and an upper bound of

the distance between every pair of atoms. The intramolecular

and intermolecular matrices represent the intramolecular and

intermolecular constraints, respectively.

The intramolecular distance matrix simply speci®es the

ranges of distances within a single molecule. Obviously, the

diagonal entries of this matrix are zeroes. This matrix is

derived from the intramolecular excluded volume constraints,

as well as the local geometries of all bonds (including ring-

forming ones). The excluded volume constraints involve every

pair of atoms more than three bonds apart in the structure.

The lower bound between a pair of atoms is set to be the sum

of their van der Waal's radii minus a small tolerance. The local

geometries, such as bond lengths and angles, of all bonds

become tight upper and lower bounds of the right atoms in the

matrix. We use the triangle inequality to smooth and propa-

gate the bounds to every entry in the matrix.

The intermolecular distance matrix speci®es the distances

between one molecule and all of its symmetry mates (bump

checking). To verify the compliance of the intermolecular

matrix, it is necessary to calculate and check several copies of

the molecule. This matrix is derived from intermolecular

excluded volume constraints alone. Unlike the intramolecular

constraints, these excluded volume constraints involve all

pairs of atoms. The lower bound between a pair of atoms is set

to be the sum of their van der Waal's radii minus a small

tolerance. The intermolecular matrix consists of no upper

bounds, only lower bounds.

The goal of the search stage is to place the root fragment

and ®nd a set of dihedral angles for the fragment tree such that

the distance matrices are satis®ed and the density sum is

maximized. Since our problem is discretized, it can be

formulated as one of searching a state space.

(i) The initial state is the null structure.

(ii) The successor states of the initial state consist of all j
pairs which can potentially be the in-bond of the root frag-

ment.

(iii) Every intermediate state is a connected partial struc-

ture of the molecule with a number of open out-bonds. These

open out-bonds are ones that do not yet have fragments

connected to them. A set of open out-bonds consists of at most

one open out-bond on the main chain and any number of open

out-bonds on the side chains. The successor states of an

intermediate state consist of every torsional sampling of every

open out-bond.

(iv) The goal states are structures that satisfy the distance

matrices and do not have any open out-bonds. All fragments'

positions are speci®ed.

(v) The value of a state is the sum of density of fragments in

the partial structure. This value is independent of the path

taken from the initial state.

The problem for the search stage is to move from the initial

state to the goal state with the highest value (Fig. 9). Since the

value is path independent, the problem is equivalent to ®nding

the highest value goal state. This goal state can be reached

through multiple paths which differ because they order the

open out-bonds differently. In fact, all goal states can be

reached by any ordering of the open out-bonds.3 Because of

the path-independence property, we simplify this problem

from a graph search into a tree search. Every intermediate

state commits to a particular open out-bond and branches on

only its torsional samples. All other open out-bonds are

deferred. This commitment assures that there are no alter-

native orderings to generate a particular structure. There is

3 Intuitively, at any intermediate state one may choose to de®ne the next main-
chain torsion angle or one of the several side-chain angles. This choice, the
ordering among main chain and side chains, does not affect the end result,
where every angle must be de®ned.



only one path from the initial state to any other state. We have

reduced the graph to a search tree. The heuristic for selecting

an open out-bond will be described in x4.4.2.

One possible approach to the problem is to use an informed

search method like the A* algorithm (Russell & Norvig, 1995).

When A* reaches a state t, it calculates an evaluation function,

f(t), that is the sum of the value of the current state, g(t), and

the estimated difference between the current state and the

best reachable goal state, h(t). [f(t) = g(t) + h(t).] Here, g(t) is

the density sum of the partial structure, whereas h(t) is the

upper bound calculated from the bound-preprocessing stage.

Suppose state t has b open out-bonds, corresponding to frag-

ments n1, . . . , nb, whose in-bonds locate at j1, . . . , jb,

respectively.

h�t� �Pb
i�1

Eni;ji
:

h is an admissible heuristic because the upper bounds Eni;ji

never underestimates. From the theory of A*, we are guar-

anteed that the search is complete, optimal and optimally

ef®cient.4

Completeness. A* is guaranteed to ®nd a goal state when

there is one.

Optimality. A* ®nds the highest-value goal state when there

are several different goal states.

Optimally ef®cient. No other optimal algorithm is guaran-

teed to search fewer states than A*.

The optimality property implies that the highest density

structure would be found. Unfortunately, A*'s optimal ef®-

ciency requires storing the entire f-value contour ± all inter-

mediate states whose f value is within a certain range. The

f-value contour's size is exponential in the search depth

because our heuristic function, h(t), has large errors.5 The

search depth is equal to the size of the fragment tree, 1 + p.

A*'s memory requirement is O(s1 + p), where s is the number

of torsional samples. On a large problem, this contour may

need more memory than is available practically.

Iterative deepening A* (IDA*; Russell & Norvig, 1995) is a

variant of A* that has the same completeness and optimality

properties, but is not optimally ef®cient. ConfMatch uses

IDA* for the conformational search because it can trade more

CPU time for using less memory. IDA* performs multiple

iterations of depth-®rst searches. Each iteration uses a parti-

cular f-value limit (flim) ± a guess of the best possible value.

Each depth-®rst search determines whether a solution exists

above flim. If a solution is found, IDA* terminates. Otherwise,

we reduce the guess flim and perform another iteration.

During every depth-®rst search, a state t is expanded only if

flim � g�t� � h�t�:

Thus, each iteration expands all nodes inside the contour of

the current flim. If flim can be set to the value of the best goal

state, the depth-®rst search will explore exactly the same

nodes as A*. Once the search inside a given contour has been

completed, a new iteration is started using a lower flim for the

next contour. IDA* terminates if one iteration ®nds some

solutions. IDA*'s space requirement is the same as depth-®rst

search. It requires O[s(1 + p)] storage, proportional to the

longest path it explores, which is much less than that of A*.

IDA* explores some states multiple times during different

iterations. However, the time overhead of IDA* over the

depth-®rst search is rather small (Patrick et al., 1992). The

reason is that in an exponential search tree almost all of the

nodes are in the bottom level, so it does not matter that the

upper levels are expanded multiple times. IDA* spends most

of the CPU time on the last search tree. If the last flim is close

to the best goal value, the depth-®rst search will search a few

more nodes than A*. IDA*'s ef®ciency will be close to

optimal. However, if the last flim is much smaller than the best

goal value, IDA* will search many more nodes than A*.

ConfMatch uses an ad hoc heuristic for choosing flims. Since

Enroot;j
is an upper bound for the root fragment at a particular

in-bond orientation, M � maxj Enroot;j
must be the upper

bound for the entire structure. Clearly, flim � M. ConfMatch

selects flims following the sequence (1 ÿ �)M, (1 ± 2�)M, . . . ,

where � is a small constant (about 0.001).

Instead of the best conformation, sometimes one may like

to obtain a family of good solutions. This can be achieved by a

simple extension to ConfMatch: after obtaining the best

solution, we set flim to be slightly lower than the best density

sum. We then perform an additional depth-®rst search and

collect a family of solutions whose values are all better than

flim.
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Figure 9
Starting from the initial state, the goal of the search stage is to ®nd the
highest value goal state.

4 Traditionally, A* ®nds the lowest cost goal state with an admissible heuristic
that never overestimates. Here, we reverse both the objective and the
admissibility property, but the theory still applies. Because the search tree/
graph is acyclic, it is impossible to increase the path value g(t) inde®nitely.
Thus all upper bounds, h(t), are well de®ned.
5 The f-value contour will grow exponentially if the error in the heuristic
function grows faster than the logarithm of the actual value. In mathematical
notation, the condition for exponential growth is that |h(t) ÿ h*(t)| > O[log
h*(t)], where h*(t) is the true difference between t and the best reachable goal.
Here, h(t)'s error is at least proportional to t's uninstantiated fragments, i.e.
|h(t) ÿ h*(t)| � O[h*(t)].
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4.4. Optimizations of the search stage

Conformational search is intrinsically very expensive in the

worst case. With the bounds table and the IDA* algorithm, it is

still very time-consuming to solve any large structure. This

section describes several techniques which accelerate the

search. None of these techniques can change the fact that the

problem is exponentially complex in the worst case. However,

in practice, the search stage with these optimizations can take

much less time than the bound-preprocessing stage given good

density data.

4.4.1. Constraining the search by the distance matrices.
From the state space of the search, we notice that every path

adds a fragment at every step. No fragment is ever removed

along a valid path. If an intermediate state's partial structure

violates some constraints in the distance matrices, it can never

lead to any goal state. It can be safely discarded from the

search. Because of this observation, we check every partial

structure against the distance matrices and terminate a branch

if any distance bounds are violated.

4.4.2. The most-constrained variable heuristic. During the

search, every intermediate state must select an open out-bond

to instantiate. This selection has a drastic effect on the ef®-

ciency of the search. We found that the most-constrained

variable heuristic (Russell & Norvig, 1995) is the most ef®cient

one among several candidates. At every state, we count how

many options are still available for each open out-bond, given

the choices made so far. We keep track of the options allowed

by the f-value limit and the distance matrices. Suppose state t

has b open out-bonds, corresponding to fragments n1, . . . , nb,

whose in-bonds locate at j1, . . . , jb, respectively. A torsional

sample l is an available option of an open out-bond ni at ji if it

does not have any distance violations with the existing struc-

ture and satis®es the condition

g�t� � Sl
ni;ji
�P

k6�i

Enk;jk
� flim:

g(t) is the density of the current partial structure. Sl
ni;ji

is the

upper bound of ni's sub-fragment tree if sample l is chosen.P
k 6�i Enk;jk

is the upper bound of all other open out-bonds.

The sum of the three terms is an upper bound of the solution

density if l is chosen at t. This inequality ensures that sample l

can potentially lead to a solution better than flim. At each point

in the search, the open out-bond with the fewest such options

is chosen to have its fragment assigned. In this way, the

branching factor in the search tends to be minimized. Intui-

tively, this heuristic selectively instantiates the fragment with

many close previously placed neighbors and little conforma-

tional freedom.

4.4.3. Utilizing crystallographic symmetry. Just like in the

previous stage, the search stage can be accelerated by

exploiting crystallographic symmetry. If a structural solution

exists, its symmetry mates are also solutions with identical

density sums. We can limit the root fragment to be in one of

the asymmetric units, instead of the entire unit cell. The search

is reduced by a factor equal to the number of asymmetric units

in the unit cell.

4.4.4. Improving the bounds table by memoization. The

technique of memoization speeds up programs by saving the

results of computation and retrieving them when needed later.

During the conformational search, all of the dead ends are

caused by violations of the distance-matrix constraints. Many

dead-end structures may share a common `core' where the

violations occur. If we can extract some knowledge from every

dead end, much of the search may be avoided. This `learning'

is achieved by updating the bounds table by memoization.

During a single depth-®rst search, some entries in the bounds

table may be read multiple times. Many paths in the search

tree may have the same open out-bond placement and hence

require the same upper bound.6 If an entry can be lowered

after the ®rst access, subsequent reads will obtain a more

accurate value and may avoid some dead ends.

Recall that an entry in the bounds table, En;=bfj, stores the

greedy maximal sum of the sub-fragment-tree of n, where n's

in-bond is located at j. Memoization de®nes a slightly different

El
n;j to be the upper bound of the density sum of the sub-

fragment tree of n, satisfying the distance matrices, where n's

in-bond is located at j, i.e. El
n;j is an upper bound of valid

solutions of the sub-fragment tree. This change in semantics

does not affect other parts of the search, but allows a tighter

upper bound. We maintain the invariant that El
n;j � En;=bfj for

all n, j.
Initially, El

n;j = En;=bfj for all n, j. IDA* performs depth-®rst

searches with different f-value limits (flim). During the search,

suppose a particular state t has b open out-bonds, corre-

sponding to fragments n1, . . . , nb, whose in-bonds locate at

j1, . . . , jb, respectively. We focus on the sub-search-tree of t. If

the precondition

flim � g�t� �Pb
i�1

El
ni;ji

�3�

is satis®ed, the sub-search tree will be explored depth-®rst.

Without loss of generality, we assume n1 is selected for

instantiation. During the search, if a structural solution is

found with density d, this solution is recorded and flim is

immediately raised to d + ", where " is the smallest

improvement in solution we accept. While traversing the sub-

search tree, we record every pair of fragments that are

involved in violations of the distance matrices.

After searching the sub-search tree, flim is raised above all

solutions. If we were to perform the search again with the

updated flim, no solution would be found. If all violations of

the distance matrices occur within the sub-fragment tree of n1,

the sub-fragment tree is the `core' of violations. Other parts of

the fragment tree have not had any violations and their

bounds shall not be changed. We may lower El
n1;j1

to the level

that (3) will not be satis®ed with the updated flim. This requires

En1;j1
� flim ÿ g(t) ÿPb

i�2 El
ni;ji

.

6 The search tree's size is exponential in the number of fragments, but the
bounds table's size is only linear. As the number of fragments increases, the
ratio between the two sizes will grow rapidly. Therefore, on average, every
entry in the table will be accessed more and more times as the size of molecule
increases.



ConfMatch uses the following rules to update the bounds

table after searching the sub-search tree of t.

(i) If all violations of the distance matrices occur within the

sub-fragment tree of n1, El
n1;j1

is updated to be

min�flim ÿ g�t� ÿPb
i�2

El
ni;ji
;El

n1;j1
;max

s

i�1
Si

n1;j1
�: �4�

(ii) If some violations involve fragments outside of the sub-

fragment tree of n1, El
n1;j1

is updated to be

min�El
n1;j1
;max

s

i�1
Si

n1;j1
�: �5�

The updated entries are always upper bounds of valid

solutions. The term El
n1;j1

ensures that the bounds are mono-

tonically decreasing. The term maxs
i�1 Si

n1;j1
follows (2). These

terms are necessary for the consistency of the bounds table.

Appendix A gives a rigorous correctness proof of these update

rules.

Memoization lowers the upper bounds continually during

the search. The better bounds means (3) is satis®ed less

frequently. IDA* is able to avoid many dead ends it would

otherwise need to explore. On large molecules, memoization

sometimes results in a speed-up of an order of magnitude.

4.5. Algorithm extension

Sometimes details of a molecule's local covalent structure

are not known perfectly before its crystal structure is solved.

There may be some ambiguities in parts of the molecule. For

example, a double bond can be either cis or trans; a rigid ring

can pucker in one of several ways. ConfMatch can resolve

these ambiguities by incorporating the different isomers into a

single search. The output of ConfMatch will be the `best-

matching' isomer at its `best-matching' conformation.

We illustrate this extension by a simple example. Suppose it

is not known whether a fragment n is a cis or trans double

bond (Fig. 10). Obviously, we could have run ConfMatch

twice, once with n ®xed to the cis con®guration and once to

trans. Then we simply pick from the two solutions the one with

the higher sum of density. Let us assume the cis conformation

has a higher sum of density.

The exact same solution will be found by an extension of

ConfMatch, but it will use only a little more resources than a

single run of the algorithm. We call the cis and trans con®g-

urations ncis and ntrans, respectively. Their entries in the bounds

table, Encis;j
and Entrans;j

, are calculated separately. The bounds

of their parent fragment, nparent, are calculated from the

maximum of ncis's and ntrans's bounds. Without loss of gener-

ality, we assume that n is the only child of nparent in the frag-

ment tree. Following (2), the bounds of nparent are calculated

by

Enparent;j
� max

s

i�1
�ei

nparent;j
�max�Encis;j

i ;Entrans;j
i ��:

Thus, Enparent;j
stores the upper bound of both cis and trans

fragments. The extra time and space required for the bounds-

preprocessing stage is equivalent to adding a single fragment.

The search stage is little changed. When ConfMatch needs

to ®nd the torsional angle of the in-bond of n, it simply sear-

ches the torsional angles of both ncis and ntrans. It appears as if

n has twice as many samples as other fragments. However, if

we have good density data, the cis solution is likely to have

much higher density sum than the trans solution. The bounds

of the best ncis samples will be much higher than those of ntrans.

Thus, the ntrans options will not be explored. The time spent on

the search stage will increase only a little. In fact, the

conformational search will probably explore a few more nodes

than the search with n ®xed to the cis con®guration, but their

solutions are exactly the same. The worst-case scenario occurs

when the cis and trans solutions have identical density sums, in

which case we must explore both sets of options. The search

stage will take time equal to searching for the two solutions

separately.

Similarly, we can generalize this extension to molecules with

multiple ambiguous fragments. An entire sub-fragment tree

may also be ambiguously de®ned. For instance, we may specify

a side chain as one of several possible amino acids. Further-

more, we can specify only the length of a peptide, but leave all

side chains ambiguous. The output will be the `best-matching'

peptide at its most favored conformation. This application

may be a useful tool for rational drug design (x1).

5. Results and discussion

We have carried out two detailed studies using the ConfMatch

algorithm to explore its performance and illustrate its range of

applicability. The ®rst study involves a designed �-helical

peptide. The second study involves a small protein (crambin).

The ConfMatch algorithm is implemented using 3000 lines of

C and the XtalView crystallography library (McRee, 1992).

The results given below were run on a 533 MHz Digital Alpha

21164 PC processor with 512 Mb of RAM.

5.1. Alpha-1: a designed a-helical peptide

The ®rst test of the ConfMatch algorithm is a designed �-

helical peptide, Alpha-1 (Prive et al., 1999; PDB code 1byz;

Bernstein et al., 1977). This peptide has 12 residues:

Ac-Glu-Leu-Leu-Lys-Lys-Leu-Leu-Glu-Glu-Leu-Lys-Gly.

The N-terminus of the peptide is acetylated. Alpha-1's native

structure is a four-helix bundle. The crystal of Alpha-1

diffracts to 0.9 AÊ resolution with 23 681 structure factors. The

space group of the crystal is P1. The unit-cell parameters are

a = 20.846, b = 20.909, c = 27.057 AÊ , � = 102.40, � = 95.33,
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Figure 10
A fragment is ambiguously de®ned as either a cis or a trans double bond.
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 = 119.62�. There is a single bundle with four chains in each

unit cell.

Since the four chains are mostly identical, ConfMatch tries

to determine only one of them. It simply chooses the chain

with the highest density sum. This target molecule has 102

non-H atoms, 55 free dihedral angles and 61 degrees of

freedom in total. Alpha-1 has no ¯exible rings and therefore

no ring-forming bonds. We obtain the geometry of our frag-

ments by decomposing a set of ideal residues. We use standard

van der Waal's radii for intermolecular and intramolecular

excluded volume constraints. Before common subtree elim-

ination, the fragment tree has 56 fragments. After the elim-

ination, only 34 fragments are left. Common subtree

elimination has reduced the time and space of the ®rst stage by

39%. Unfortunately, the crystal's P1 symmetry means that its

asymmetric unit is the entire unit cell. We are unable to use the

crystal's symmetry to reduce the size of the bounds table

further.

A grid of 42 � 42 � 55 was selected for the Alpha-1 unit

cell. The grid spacing is approximately 0.5 AÊ in every dimen-

sion. We use Lattman's method to generate 3686 rotational

transforms for each fragment. The spacing of the rotations, �L,

is 16.36�. The size of the bounds table of each fragment ranges

from 13 291 740 to 20 956 320 entries. The total size of the

table is 608 121 360 entries, taking 1.216 Gb of storage.

We tested ConfMatch with diffraction data at 2.0 AÊ . The

density distribution is generated from 2548 structure factors

with their published phases. This input is merely 10.8% of the

data at 0.9 AÊ . Using these ideal phases means that we are

matching a conformation to the perfect density, but with

the high-frequency information removed. The bound-

preprocessing stage and the search stage take 14 700 and 17 s

of CPU time, respectively. The overwhelming majority of the

running time is spent on the ®rst stage. Fig. 11 shows the

solution structure from ConfMatch superimposed with the

published 0.9 AÊ structure. ConfMatch's result has an RMSD

(root-mean-square deviation) of 0.812 AÊ from the target

structure. The difference between the global upper bound

from the ®rst stage, M, and the density of the solution struc-

ture is very small. It is equivalent to just 0.32 of the average

density of an atom.

We investigated the effect of using data at various resolu-

tions while keeping all other parameters unchanged. In doing

so, we try to ®nd the minimum amount of experimental data

necessary to calculate a useful structure. The results are shown

in Table 3. In general, all performance measures worsen with

the data resolution, because less information is available in the

density map. The running time of the bound-preprocessing

stage is constant for all resolutions, but that of the search stage

varies with the dif®culty of the conformational search.

However, the bound-preprocessing stage always dominates

the search stage in CPU time. The quality of the solution

structure (as measured by RMSD to the correct solution) and

the bounds table (as measured by the difference between the

global upper bound M and the actual solution density) both

Figure 11
ConfMatch's solution structure (in black) of Alpha-1 from 2.0 AÊ

resolution data and the published 0.9 AÊ structure (in yellow). The thicker
portions are the backbones of the structures.

Table 3
Alpha-1's conformation is matched to data at various resolutions with
ideal phases.

The running time of the last iteration of the search stage is close to that of the
entire stage because IDA* is dominated by the last depth-®rst search. DIFF:
difference between the global upper bound M and solution density (equivalent
number of atoms).

Resolution
(AÊ )

Number of
re¯ections

RMSD
(AÊ )

Search stage
last iteration
time (s) DIFF

2.0 2548 0.812 17 0.32
2.1 2190 0.759 20 0.03
2.2 1925 0.817 14 0.18
2.3 1669 0.960 20 0.18
2.4 1475 0.964 20 0.0
2.5 1309 0.968 15 0.16
2.6 1144 0.939 14 0.38
2.7 1036 0.866 20 0.07
2.8 933 0.831 15 0.0
2.9 831 0.827 20 0.0
3.0 740 1.003 25 0.81
3.1 691 1.030 42 1.15
3.2 629 1.386 20 1.23
3.3 566 1.979 704 2.04
3.4 515 5.774 253 2.82



deteriorate with worse resolution of the data. There is a large

jump in RMSD from 3.3 to 3.4 AÊ . Fig. 12 shows the 3.4 AÊ

solution structure superimposed with the target structure. The

backbones of those two structures are signi®cantly different.

For Alpha-1, 3.3 AÊ seems to be the resolution limit where

ConfMatch can calculate an accurate structure. This limit is

suf®ciently generous because it includes almost every set of

published data. The number of structure factors at 3.3 AÊ is

merely 2.39% of the original experimental data. It may also be

the limit of chemical constraints in the full set. To push this

boundary further, an algorithm needs to acquire more

chemical and biological knowledge about the molecule.

We have also investigated the effect of phase error on

ConfMatch. Both experimental and direct methods for struc-

ture determination generate phases with substantial errors.

Being able to tolerate phase error is essential for ConfMatch's

practical applications. We model these errors by adding

random Gaussian noise to the perfect phases.7 By varying the

standard deviation of the Gaussian distribution, we can

measure ConfMatch's tolerance. The results from 2 AÊ reso-

lution data are shown in Table 4. As expected, all performance

measures worsen with increasing phase error. The RMSD

generally increases with phase error. There is a large increase

in both RMSD and search time from 50 to 55�. At 55� phase

error, the search tree of the last iteration has 161 828 154

nodes. The search stage uses more CPU time than the bound-

preprocessing stage, but can only ®nd a low-quality structure.

50� may be the limit of ConfMatch's error tolerance of

Alpha-1 at 2 AÊ . We expect this tolerance to improve with

higher resolution data and to shrink with worse data.

From Tables 3 and 4, we observe a positive correlation

between RMSD and DIFF (the difference between M and

solution density). In other words, the quality of the solution

correlates with the quality of the bounds table. The only

exception occurs at 45� phase error, where DIFF is quite large

but the answer is tolerable. This suggests a possible use of

DIFF as a con®dence measure: if we apply ConfMatch on a

real crystallography project, we cannot calculate the RMSD

because the target structure is not known. Similarly, we have

no knowledge of the amount of error in the phase set. Under

this circumstance, DIFF may be substituted as a measure of

con®dence in the solution conformation. The smaller the

DIFF, the more con®dent we are in the solution and vice versa.

5.2. Crambin

The second test of the ConfMatch algorithm is crambin

(Teeter et al., 1993; PDB code 1ab1), a small 46-residue

protein. The crystal of crambin diffracts to 0.89 AÊ resolution

with 19 803 structure factors. The space group of the crystal is

P21. The unit-cell parameters are a = 40.759, b = 18.404,

c = 22.273 AÊ , �= 90.00, �= 90.70,  = 90.00�. This molecule has

326 non-H atoms, 141 free dihedral angles and 147 degrees of

freedom total.

5.2.1. Modifying the objective function of conformational
matching. Crambin has six cysteine residues which form three

disul®de bonds. Sulfur has a higher electron density than N, C

or O because it has a larger atomic number. The overall

density distribution has several large peaks corresponding to

the sulfur positions. Fig. 13 plots the density of the highest

peaks of a typical crambin distribution. There is a signi®cant

gap between the sixth highest peak and the seventh one

because of the difference between the six S atoms and others.

If we use the simple objective function, the sum of density at
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Table 4
Alpha-1's conformation is matched to phases with various level of error
using 2 AÊ resolution data.

DIFF, difference between the global upper bound M and solution density
(equivalent number of atoms).

Phase error
(degree standard
deviation)

RMSD
(AÊ )

Search stage
last iteration

DIFF
time (s)

0 0.812 17 0.32
5 0.702 20 0.38
10 0.793 20 0.62
15 0.806 25 0.27
20 0.841 20 0.23
25 0.718 100 0.48
30 1.002 310 0.88
35 1.322 15 0.72
40 0.951 21 0.30
45 1.013 980 7.12
50 1.416 67 1.18
55 11.370 21240 7.16

Figure 12
ConfMatch's solution structure (in black) of Alpha-1 from 3.4 AÊ

resolution data and the published 0.9 AÊ structure (in yellow). The thicker
portions are the backbones of the structures.

7 Following a suggestion of William M. Wells III, the Gaussian distribution is
approximated by summing three uniform random variables within the range
(ÿ�, �), where � is the desired standard deviation of the Gaussian
distribution.
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atom locations and ignore the different identities of atoms, the

sulfur locations will become strong `attractors' of all other

atoms. Consequently, the bound-preprocessing stage will place

multiple atoms at the sulfur positions and the upper bounds in

the bounds table will be very loose. This problem can be

overcome by a small modi®cation to the objective function: we

separate the atoms into different classes according to their

atomic numbers. Each class has its own electron-density

distribution that the atoms will measure from. These different

distributions are biased toward their respective classes of

atoms. The new objective of conformational matching is to

maximize the sum of density, measured from an atom's

particular density distribution, at positions of all atoms. The

ConfMatch algorithm can accommodate this modi®cation

without any major change.

In the case of crambin, the atoms are separated into two

classes: (i) S atoms and (ii) all other non-H atoms. The S

atoms, using the original density distribution, will preferably

locate at the highest density regions. All atoms other than

sulfur use a density distribution modi®ed from the original

one. This modi®ed distribution is more uniform than the

original because it has the highest density regions suppressed.

First, we ®nd the seven highest peaks of the original distri-

bution, one more than the number of S atoms. Let P1, . . . , P7

be the densities of the seven peaks. The difference between Pi

and P7 is a measure of our con®dence that the ith peak shall be

occupied by sulfur. We suppress the ith peak by subtracting a

typical S-atom density distribution, scaled to height 2(Piÿ P7),

from the original distribution. After the six highest peaks are

suppressed, we have removed much of the in¯uence of the S

atoms. This modi®cation is robust in spite of low data reso-

lution or phase errors. For instance, several neighboring peaks

of heavier atoms often merge together at low resolution. It

appears as if there are fewer heavy atoms than expected. If

these or other errors in the density distribution cause a wrong

peak i to be chosen, it is very unlikely that Pi ÿ P7 will be

large. Therefore, our miscalculation will have only a minor

impact on the density distribution.

If one has metal ions that one did not know about in

advance, the contribution of these ions to the density map

cannot be easily removed. The ions' strong peaks may become

strong `attractors' of all other atoms. To avoid this problem,

one can incorporate the real-space correlation coef®cient into

the objective function, as described in x6.

5.2.2. Utilizing crambin's crystal symmetry. The crambin

crystal's P21 symmetry means that there are two asymmetric

units per unit cell. This allows us to reduce the time and space

requirement of our program by 50% if the conditions outlined

in x4.2.3 can be satis®ed. The P21 space group has a twofold

screw axis parallel to b (Fig. 14). If a particle is located at

fractional coordinates

u

v

w

0@ 1A;
there must be an identical particle symmetrically located at

ÿu

v� 1
2

ÿw

0@ 1A:
The symmetry operation can be represented by the matrix

ÿ1 0 0 0

0 1 0 1
2

0 0 ÿ1 0

0 0 0 1

0BB@
1CCA:

This symmetry places a restriction on the dimension of the

grid. Let b be the number of grid points in the b direction. The

grid spacing in the b direction is 1/b in fractional coordinates.

Since the symmetry operation includes a translation of 1
2 in the

b direction, 1
2 must be divisible by 1/b in order for the grid to be

invariant. Therefore, b must be an even number. We selected a

Figure 14
The twofold screw axis of the P21 space group in two dimensions. The c
vector projects into the plane. The asymmetric unit is half of the unit cell,
divided along u = 1

2.
Figure 13
The highest peaks in crambin's 2.0 AÊ resolution density distribution.



grid of 83 � 38 � 45 for the crambin unit cell (b = 38), with

grid spacing approximately 0.5 AÊ in every dimension. The unit

cell can be separated into two asymmetric units by dividing

along u = 1
2. We perform all of our calculations on the asym-

metric unit where u 2 [0, 1
2]. The grid within this asymmetric

unit is 42 � 38 � 45, about half the size of the original grid.

The other condition of utilizing the crystal symmetry is that

the rotational sampling preserves the rotational symmetry.

Extracted from the symmetry operations, the rotational

symmetry can be represented as

S �
ÿ1 0 0

0 1 0

0 0 ÿ1

0@ 1A:
If we are given a rotational transform R in Cartesian coordi-

nates, its symmetric transform will be CSCÿ1R, where C is the

3 � 3 transform from fractional into Cartesian coordinates.

For crambin,

Cÿ1 �
0:024534 0 0:0003

0 0:054336 0

0 0 0:044901

0@ 1A;
which implies CSCÿ1 = S. Thus, R's symmetric transform is

simply SR. This property is true for all P21 unit cells, but it

remains to be proven for other space groups.

Initially, we use Lattman's method to generate 2062 rota-

tional transforms, with �L = 20.0�. (The branching factor of

conformational search is around 18.) Each transform then

generates a symmetry mate by the equation above. A total of

4124 rotational transforms are generated. Note that these

transforms are no longer uniformly distributed, but are twice

as dense around b than around other axes. Rao et al. (1980)

have described a method which generates the rotational

transforms more uniformly for various space groups.

5.2.3. Crambin results. In a typical X-ray experiment, the

exact disul®de-bonding residue pairs are not known before-

hand. This knowledge is usually obtained from the density

map. We have modeled this lack of knowledge by removing all

of crambin's disul®de bonds from the intramolecular distance

matrix, but allowing any cysteine pairs to form such bonds; we

reduce the intramolecular lower bounds among all cysteine S

atoms to the bond length of a typical disul®de bond. The upper

bounds, on the other hand, are not set. Thus, any cysteine pair

can form or not form a disul®de bond.

With the modi®cations above, we tested our program on

crambin. After removing the disul®de bonds, crambin does not

have any ¯exible-ring forming bonds. Before and after

common subtree elimination, the fragment tree has 142 and

111 fragments, respectively. Common subtree elimination

reduces the time and space of the ®rst stage by 22%. The

crystal's P21 symmetry reduces the time and space by another

factor of two. The size of the bounds table of each fragment

ranges from 7 756 560 to 13 933 080 entries. The total size of

the table is 1 380 954 960 entries, taking 2.762 Gb of storage.

As in the previous experiment, we tested ConfMatch with

diffraction data at 2.0 AÊ . The density distribution is generated

from 2360 structure factors with their published phases. This

input is merely 11.9% of the data at 0.89 AÊ . The bound-

preprocessing and search stages take 42 900 and 34 s of CPU

time, respectively. Again, the vast majority of the running time

is spent on the ®rst stage. The last iteration of IDA* explored a

search tree with 46 453 nodes to reach the solution. The

effective branching factor of the search tree is only 1.08, which

is much smaller than the worst-case branching factor of 18.

This is mostly because of the accuracy of the upper bounds.

Fig. 15 shows the solution structure from ConfMatch

superimposed with the published 0.89 AÊ structure.

ConfMatch's result has an RMSD of 0.588 AÊ from the target

structure. The difference between the global upper bound M

(calculated from the bound-preprocessing stage) and the

density of the solution conformation is equivalent to 0.73 of

the average density of a single C atom.

As the previous experiment, we investigated the effect of

using data at various resolutions while keeping all other

parameters unchanged. The results are shown in Table 5. The

running time of the bound-preprocessing stage is constant for

all resolutions, but that of the search stage varies greatly. In

general, all performance measures worsen with the data

resolution. ConfMatch was able to calculate an accurate

structure at 2.6 AÊ resolution. At 2.7 AÊ , however, ConfMatch

could not ®nd a solution. In this case, ConfMatch is not limited

by the chemical constraints, but by the available computa-

tional resources: the search stage requires more CPU time

than we can afford. After spending 548 016 CPU s

(6.34 CPU d) on the last iteration of IDA*, no solution was

found. There were too many structures with steric clashes

which had higher density than the best solution. At 2.7 AÊ , the

exponential time search stage requires far more resources

than the polynomial time bound-preprocessing stage. Finding

a solution at 2.7 AÊ will require more computational resources

for searching or a more ef®cient algorithm.

We have also investigated the effect of phase error on

ConfMatch. We model these errors by adding a varying degree

of random Gaussian noise to the perfect phases. The results

from 2 AÊ resolution data are shown in Table 6. ConfMatch was

able to calculate an accurate conformation with 15� phase

error. However, ConfMatch could not ®nd a solution with 20�

phase error. After spending 521 532 CPU s (6.04 CPU d) on

the last iteration of IDA*, no solution was found. Once again,

we are limited by the computational resources, not by the

chemical constraints.

A 20� phase error is usually not signi®cant. After computing

an electron-density map from these phases, we cannot ®nd any

obvious problems. This suggests that the space that ConfMatch

needs to search through may grow rapidly with phase error. In

the next section, we propose a different objective function for

ConfMatch which may ameliorate this problem.

6. Conclusions and future work

We have demonstrated that ConfMatch, a branch-and-bound

algorithm, can ®nd the globally optimal solution of a problem

(discretized conformational matching) that has more than 100

degrees of freedom. The solution space of this problem
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includes the grid-based conformations generated from

sampling all free dihedral angles, as well as the six rigid

degrees of freedom. (To ensure that ConfMatch covers all

possible conformations on the grid, one may follow the

sampling scheme in Fig. 8.) To reach the global optimum, it is

necessary to systematically explore a search tree exponential

in the number of degrees of freedom. The most important idea

of ConfMatch is an ef®cient method for computing accurate

bounds. ConfMatch relaxes the conformational matching

problem, a problem which can only

be solved in exponential time (NP-

hard; Garey & Johnson, 1979), into

one which can be solved in poly-

nomial time. The relaxed problem

retains all local constraints of

conformational matching, but

ignores all non-local ones. The

solution to the relaxed problem is a

guaranteed upper bound for the

conformational matching problem.

When the input data is of suf®-

ciently good quality, the local

constraints can lead to accurate

bounds. In most empirical cases,

these bounds are accurate enough

to prune the search space drama-

tically, making ConfMatch a practical algorithm for the NP-

hard problem.

On the practical side, ConfMatch is able to fully automate

the interpretation of electron-density maps. This important

task normally requires much interactive ®tting and re®ning of

the molecular structure. Now ConfMatch may be able to

transfer part of the workload from the crystallographer to

computers. This may remove human subjectivity from map

interpretation and accelerate the crystal structure solution

process. This technology may have particular impact in protein

structure solution efforts.

Presently, ConfMatch can solve the conformation of a 40±50

residue protein with moderate error in the phase set. If one

needs to solve the structure of a larger protein or to use a

density map with larger error, one may need to provide some

guidance to the program. One possible technique is to split a

large protein into smaller 20±30-residue peptides and solve

each segment independently. This effectively converts the

global optimization problem into several sub-problems. If the

density distribution has good quality, the various segments

may merge at appropriate positions and form a good confor-

mation overall. In other words, the solutions of the sub-

problems can combine to be an approximate solution to the

global problem. Our results with Alpha-1 using suf®ciently

high-quality data support this possibility. Searching density for

four chains with a single chain correctly identi®ed a single

connected chain in the density.

A different kind of human assistance can be incorporated

using ConfMatch through seeding the structure or restricting

the locations of some parts of the conformation. Traditionally,

crystallographers initiate the map-interpretation process by

locating large distinct side chains such as tryptophan and then

gradually ®lling in the rest of the structure. In MAD-phased

maps, the positions of Se atoms serve a similar function. This

kind of information can greatly improve the ef®ciency of

ConfMatch by accelerating the search stage. For example, if a

user speci®es some positions and orientations of tryptophans,

ConfMatch can assign some small regions of the unit cell to

tryptophans only. Within these special regions, the tryptophan

fragments will have their density boosted, but all other frag-

Table 5
Crambin's conformation is matched to data at various resolutions with ideal phases.

The running time of the last iteration of the search stage is close to that of the entire stage because IDA* is
dominated by the last depth-®rst search. DIFF, difference between the global upper bound M and solution
density (equivalent number of atoms).

Resolution
(AÊ )

Number of
re¯ections

RMSD
(AÊ )

Search stage
last iteration
time (s)

Last search-
tree size

Effective
branching
factor DIFF

2.0 2360 0.588 34 46453 1.08 0.73
2.1 2049 0.611 16 6724 1.06 0.46
2.2 1783 0.724 1176 2507739 1.11 1.71
2.3 1565 0.774 21 21660 1.07 1.80
2.4 1378 0.677 1695 4763224 1.11 2.04
2.5 1228 0.707 1580 4207880 1.11 1.05
2.6 1102 0.794 5926 17764058 1.12 2.04
2.7 987 Unknown >548016 >1449835314 >1.16 >2.26

Figure 15
ConfMatch's solution structure (in black) of crambin from 2.0 AÊ

resolution data and the published 0.89 AÊ structure (in yellow). The
thicker portions are the backbones of the structures.



ments will have very low values. This modi®cation creates a

large gap (in density sum) between those conformations that

place tryptophans at the speci®ed locations and those that do

not. This gap will be re¯ected in the bounds table. Most

conformations that do not place tryptophans at the speci®ed

locations are eliminated by the bounds. As a result, the

conformational search will explore far fewer conformations

than the naive approach.

Obviously, the best approach to solving large proteins or

data sets with large errors is to improve fundamentally the

computational ef®ciency of ConfMatch. One possible way to

improve the speed of ConfMatch is making use of prior

knowledge about protein structures. This knowledge includes

the allowed values and combinations of values for the main-

chain and side-chain torsion angles. Currently, ConfMatch

samples every torsion angle from ÿ� to � as if all values are

allowed. However, the Ramachandran plot allows only certain

combinations of ' and  values. This knowledge can be

utilized by consolidating three fragments into a `super-

fragment' (Fig. 16). Since all fragments are required to be

rigid, we need to add multiple instances of this `super-

fragment'. Each instance corresponds to a pair of ' and  

values allowed by the Ramachan-

dran plot. (The disallowed ' and  
combinations are not generated.)

Similar to the extension in x4.5, the

best instance of the `super-

fragment' will be selected in the

®nal solution. This modi®cation is a

trade-off between the bound-

preprocessing stage and the search

stage. The bound-preprocessing

stage requires more resources

because additional bounds tables

need to be calculated for the

superfragment instances. The search stage requires less

resources because of smaller search space and more accurate

bounds. (The bounds become more accurate because the

conformations with the disallowed ' and  combinations are

no longer part of the calculation.) The overall effect on

ConfMatch's ef®ciency remains to be determined.

Another promising technique to improve ConfMatch is

extracting more information from the density map. Obtaining

more information has effects similar to improving the reso-

lution of the density map. It will automatically lead to better

overall performance. Speci®cally, the current objective func-

tion of ConfMatch evaluates the density of an atom at a single

point ± the center of the atom. If we measure the density

within a local neighborhood of the atom, we may detect a

more accurate signal. For example, Jones and coworkers

(Jones et al., 1991; Jones & Kjeldgaard, 1996) developed the

real-space correlation coef®cient (RSCC) which measures the

correlation between the expected and the observed density

distribution within a region. For ConfMatch, every fragment

has a unique density distribution. An appropriate envelope

can be de®ned for each fragment to calculate its RSCC. A

large RSCC will imply that the fragment is likely to be at the

center of the envelope and vice versa. ConfMatch can be

modi®ed to maximize the sum of RSCC over all fragments. If

the RSCC or other measures is a more accurate detector than

the density at atom centers, it will automatically lead to better

bounds and more ef®cient searches. ConfMatch may then be

able to solve larger and more dif®cult problems.

APPENDIX A
Correctness of bounds-table memoization

This appendix explains the correctness of the updates to the

bounds table. It shows that the entries are always upper

bounds of valid solutions.

We know that a structural solution is accepted only if its

density d is greater than or equal to flim. flim is raised to d + "
after ®nding the solution. During a single depth-®rst search,

flim is monotonically increasing. All entries in the bounds table

are updated by (4) and (5). The bounds are monotonically

decreasing. After a depth-®rst traversal of a sub-search tree, if

we perform the search again with the updated flim and bounds,

(3) will be satis®ed less often. The new search would explore
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Figure 16
The constraints on ' and  from the Ramachandran plot can be utilized
by consolidating three fragments into a `superfragment'. Multiple
instances of the superfragment are needed; each corresponds to an
allowed combination of ' and  .

Table 6
Crambin's conformation is matched to phases with various levels of error using 2 AÊ resolution data.

DIFF: difference between the global upper bound M and solution density (equivalent number of atoms).

Phase error
(degree standard
deviation)

RMSD
(AÊ )

Search stage
last iteration
time (s)

Last search-
tree size

Effective
branching
factor DIFF

0 0.588 34 46453 1.08 0.73
5 0.588 580 735865 1.10 1.20
10 0.631 470 153694 1.08 1.08
15 0.681 23 2726 1.06 0.18
20 Unknown >521532 >1512036839 >1.16 >1.67
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only a subspace of the earlier one. Since we have raised flim to

be above any solution in the sub-search tree, we can safely say

no solution would be found in the new search.

Invariant 1. For all n, j, before and after n's sub-fragment-tree

is searched,

El
n;j � max

s

i�1
Si

n;j:

We prove this invariant by induction.

Base case. Initially, El
n;j = En;=bfj for all n, j because the bounds

table was built by (1) and (2). The invariant holds.

Inductive case. After searching n's sub-fragment tree, the

bounds table is updated by (4) and (5). The invariant holds

because both equations contain the term maxs
i�1 Si

n;j.

A sub-conformational search is a search involving only a

portion of the fragment tree. Suppose we start a sub-

conformational search with just the sub-fragment tree of node

n whose in-bond locates at j. We de®ne f l
n;j�t� to be the f-value

[g(t) + h(t)] of a state t in the sub-conformational search. At

the initial state tinit, f l
n;j�tinit� � El

n;j. In the search tree, there is a

`greedy' path which selects arg maxs
i�1 Si

n;j at every branch.

Because of invariant 1, f l
n;j�t� is increasing on this path.

Therefore, on the `greedy' path of the sub-conformational

search, f l
n;j�t� � El

n;j for all states t.

Invariant 2. For all n, j, El
n;j is always a valid upper bound.

This invariant means that all entries in the bounds table are

always upper bounds. If n's in-bond is located at j, there is no

structural solution (without any violations of the distance

matrices) for the sub-fragment-tree of n with density sum

above El
n;j. Again, we prove this invariant by induction.

Base case. Initially, El
n;j � En;j for all n, j. Because En;=bfj is an

upper bound of all possible structures, the invariant holds.

Inductive case. Assuming all En;=bfj are valid at state t, we need

to prove that the update rules preserve the upper-bound

property of El
n1;j1

. In other words, we need to show that all

terms in (4) and (5) are valid upper bounds.

(i) By the inductive assumption, the original value El
n1;j1

is

an upper bound.

(ii) By the inductive assumption and the construction of (2),

maxs
i�1 Si

n1;j1
is an upper bound.

(iii) We now prove by contradiction that flim ÿ g(t) ÿPb
i�2 El

ni;ji
is a valid upper bound if all violations of the

distance matrices occur within the sub-fragment tree of n1.

Suppose there is a valid structure x for the sub-fragment tree

of n1 with g(x) > flimÿ g(t)ÿPb
i�2 El

ni;ji
. As we have explained

earlier, no solution would be found if we perform a new search

from t with flim (without changing flim or any E1). Let t0 be a

descendant state of t. t0 can be partitioned into the partial

structure of t and the partial structures from the sub-

conformationalsearch of n1, . . . , nb. Therefore,

f �t0� � g�t� �Pb
i�1

f l
ni;ji
�t0�:

Consider a particular dead-end state t* which follows x, as well

as the `greedy' paths of n2, . . . , nb (Fig. 17). t* has no viola-

tions because x is a valid structure. It must be terminated by

condition (iii). Thus, f(t*) < flim. Since t* is in the subtree of t,

f �t�� � g�t� �Pb
i�1

f l
ni;ji
�t��:

We know that for i 2 [2, . . . , b], f l
ni;ji
�t0� � Eni;ji

because of the

`greedy' paths. From the inductive assumption, f l
n1;ji
�t�� � g(x)

> flim ÿ g(t) ÿPb
i�2 El

ni;ji
. Therefore,

f �t�� > g�t� �Pb
i�2

El
ni;ji
� flim ÿ g�t� ÿPb

i�2

El
ni;ji
;

which means

f �t�� > flim:

We have reached a contradiction.

Since all terms of the update rules are correct, they must

preserve the upper bound property.
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